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Based on numerical integration of the equations of mechanics of multiphase media, an effect of focusing of 

a particle f lux generated by a source located on the upper wall of a closed vessel has been revealed and 

investigated. 

Hydrodynamic interaction of particles suspended in a carder medium causes a number of mechanical 

phenomena such as enhanced sedimentation of particles in vessels with tilted side walls [1 ], transformation of 

particle clouds in the gravity field [2, 3 ], and others [4 ]. The present authors have revealed and investigated in 

detail a new effect that is also initiated by the hydrodynamic interaction of particles, namely, focusing of a particle 

flux generated by a source located on the upper wall of a closed vessel. 

We consider a plane vessel of square cross-section with side H which is filled with a perfect viscous 

compressible gas. At the initial moment the gas has temperature TO and is in hydrostatic equilibrium: 

t = 0 :  U 1 = 0 ,  O P / O y = - p l g .  

In the problem Cartesian coordinates with their origin in the lower left-hand angle of the vessel are used; 

the y-axis is directed along the lateral side against the gravitation vector, while the x-axis runs normal to the y-axis. 

A section of the upper vessel wall with length l, with its center at the point x = 0.5H, at t > 70 begins to 

generate spherical monodisperse solid particles with the same intensity along the section. The power of the source 

is constant in time and equal to N particles per second. The particles that leave the source have density p0, diameter 

d, zero velocity, and temperature To. 

Due to the gravity force the particles fall and owing to friction entrain the gas. Starting its motion the gas 

influences, in turn, the trajectory of the particles. A goal of the present work is to clarify the steady-state picture 

of this motion. 

To solve the problem, we have employed methods of the mechanics of multiphase media [5 ]. Since the 

inlet temperature of particles is equal to the initial temperature of the gas and the temperature drops due to energy 

dissipation and pressure forces are negligible, the process under consideration is treated as an isothermal one and 

therefore the gas and the particles temperature are always equal to TO. 

Two-dimensional gas motions are described by the following equations written in dimensionless form (the 

notation is the same as for dimensional quantities): 

dlPl (1) 
dt - - Pl (VU1) ' P = P l ,  

dxU 1 1 ( 1 ) 
Pl d ~  - Eu VP + Re AU1 + 3 V (VU1) + pl e _ f ; (2) 

d l / d t -  O/Ot + (U1V). 

In reducing to dimensionless form, we have used, as characteristic scales, the length of the vessel side H, 

the velocity ~/gH, the time ,/-if?g, the gas density at the initial moment near the lower surface p 10, and the pressure 

Rp10T 0 (R is the gas constant). The dimensionless complexes in (1), (2) are as follows 
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Eu = R T o / g H  , Re = H ~/gH p l o / r l .  

Since systems with a small volume content of the disperse phase are under consideration, we neglect its 

volume and the mean gas density P l coincides with its actual density. We investigate the motion of ra ther  small 

particles; for their  drag coefficient the Stokes formula is valid and we use it in the work. For the force of interphase 

interaction we obtain the following expression: 

0 2 
f P2 (UI - U2) P2 d Vr-g/H. 

- T , z -  18r/ 

The gas velocity on the vessel walls is equal to zero. Particles that penetrate into the viscous boundary 

layer near the lower wall decrease their velocity down to the velocity of free fall of a single particle in a motionless 

medium. As a consequence, even after absolutely elastic collision of particles with the wall the particles recoil for 

quite insignificant (about 0.01% of the region height) distances and after 2 - 3  rebounds they settle onto the surface. 

In the finite-difference method of numerical integration adopted in this work these processes are not modeled but 

the condition of absolutely inelastic collision of particles with the wall has been set thus excluding their  fur ther  

consideration. 

Motion of the dispersed phase is described using the Lagrange technique that allows one to trace the 

trajectory of each separate compact aggregate of particles (individual macroparticle) [6 ]. All particles leaving the 

source for a sufficiently small time t, << v~fffg are conventionally subdivided by vertical sections into L equal 

aggregates. The  equations of motion of macroparticles in dimensionless form are as follows 

dV" k U 1 - U k dr k 
�9 d t  - e + -----7---,  d t  - V , ~ ,  ( 3 )  

where Vk and rk are the velocity and the radius-vector of the k-th macroparticle. The dimensionless mass M of a 

single macroparticle is 

/ M2p: . ~ d  p2 N 
M - - -  M21 = " HYH~g z-. = t, ~ 

L 6,o10 H2 ' 

The parameter  M21 characterizes the source power and expresses the mass ratio of the dispersed phase released 

by the source for the characteristic .time of the problem to the vessel gas. 

The  equations of gas motion (1) and (2) are solved by the finite-difference method using the implicit 

scheme of coordinate splitting [7 ] on a uniform rectangular network. 

The  equations of the dispersed phase (3) at a known gas velocity are integrated in quadratures. Designating 

the quantities known at the moment t n with the superscript n, we obtain the following expressions for the coordinates 

and the macroparticle velocities at some later moment t n+l = t n + r2, which were used in this work: 

n + l  n n _ re) (1 - exp ( -  T2/v)) T r k = r , + ( C ~ + r e )  r 2 + ( v ~ - U  1 (4) 

vn+l n n re) exp ( -  r 2 / r )  k = U1 + re  + (V~ - U 1 - (5) 

The gas velocity U~ in (4) and (5) is taken at the point r ~ .  Its value at this point is determined through linear 

interpolation with respect to the corresponding values at four adjacent nodes of the network. 

To solve the gas Eq. (1) and (2), it is necessary to know the mean density and velocity of the dispersed 

phase at the network nodes. They  were determined in the same manner  as in the method of particles in cells [8 ]. 

The  entire calculation region was subdivided into subregions (meshes) with their centers located at the network 

nodes. Then  the mean density of the dispersed phase at an arbitrary node was determined by dividing the total 
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Fig. 1. Steady-state configuration of incident particles (hatched region) and 

the gas velocity field (Re = 130, z -- 0.3, ll = 0.2, M21 = 10 -3. In virtue of 

the solution symmetry  only the right-hand half of the region is shown). 

mass of macroparticles in the mesh whose center is at the considered node by the mesh volume. The  velocity of 

the dispersed phase at the nodes was similarly determined. 

To increase the effectiveness of the numerical procedure, the equations for the gas and particles were 

integrated at different time steps ~1 and T2, respectively. In the calculations zl corresponded to a Courant  number 

equal to 8, while ~2 -- 2~1 or T 2 = 37:1. Here,  z. which determines the rate of macroparticle formation, equals ~2 

(macroparticles are formed at each time step of integration of the equations for the dispsersed phase). 

A s ta t ionary  solution was obta ined by the t ime-dependent  method.  The  condit ion that  the relative 

difference between any quantities on two successive time layers does not exceed 0.1% served as  a criterion for 

obtaining a stationary value. 

Calculations were made in half of the region on a 12 x 21 network using the symmetry condition at x -- 

0.5; which was implemented by introducing fictitious nodes. The number of macroparticles formed at each time 

step was L = 10-20 ,  and the stationary number  of macroparticles with respect to the region height was 100-200.  

With these parameters,  as check calculations have shown, the numerical solution is independent  of the network 

pitch and the number of macroparticles. Usually 1 0 - 2 0  min are required to process one variant on a computer 

ES-1035. 

In all the calculations the Euler number  was maintained constant (Eu -- 14.3), and the other  parameters 

were within the following limits: Re = 5 0 - 1 . 5 .  103; T = 5 - 1 0 - 3 - 0 . 5 ;  and M21 = 10 - 7 - 1 0 - 2 ;  l 1 = 0 .05 -0 .3  (/1 = 

I /H  is the dimensionless width of the source of particles.) For the purpose of illustration of these quantities we 

provide the following example. For a vessel with height H = 3 cm filled with air under  normal conditions with a 

source that generates particles with diameter d = 12/~m and density pO = 1.3.103 kg/m 3 we find that Re -- 1.2.103, 

T = 10 -2, and Eu = 2.4.105 (the parameters M21 and li characterizing the source power and size may be arbitrary).  

Our calculations have been oriented to similar systems. As the example shows, modeling with respect to the Euler 

number  is not fulfilled formally, i.e., in the calculations the compressibility of the carrier medium is considerably 

in excess of the actual compressibility. However, variation of the Euler number (Eu -- 10, 102, 103) demonstrated 

that the solutions obtained were independent  of its values. Therefore the calculations were conducted with an 

artificially low Euler number  since calculations at high Euler numbers consume excessive computer time. 

Due to gravity the particles leaving the source begin to fall. An arbitrarily chosen incident particle causes 

the carrier  medium to move, thus changing the velocities of other  particles. Owing to such (hydrodynamic)  

interaction the free-fall velocity of particles in the flow exceeds that of an identical particle in the same medium 

while in the region a descending gas flow develops near the symmetry plane x = 0.5. On approaching the lower 

surface, the moving gas spreads along it and then ascends near  the side walls of the vessel. As a result, a 

symmetrical two-vortex structure is formed in the carrier phase with the centers of the vortices in the lower half of 

the vessel. Figure 1 shows the steady-state velocity field of the gas and spatial distribution (configuration) of falling 
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Fig. 2. Focusing coefficient as a function of source power (curve 1, Re = 103, 

T = 10 -2,  l 1 = 0.1), the Reynolds number (curve 2, M21 = 10 -3,  z = 10 -2,  

ll = 0.1), the tim~e of the high-rate relaxation of particles (curve 3, M21 = 

10 -3, Re = 103, ll = 0.1), of the source width (curve 4, M21 = 10 -a ,  Re -- 103, 
T = 10-2).  

Fig. 3. Narrowing Coefficient versus the problem parameters (numbering of 

the curves and the parameters values correspond to Fig. 2). 

particles. It is seen that due to the gas flow converging to the symmetry plane in the upper part of the vessel the 

configuration of particles acquires the form of a convergent jet in a larger part of the region with slight expansion 

near the lower surface. (This expansion is caused by spreading of the carrier medium flow in this part.) The flux 

of particles leaving the source undergoes peculiar focusing: the particles settle down over a section of the lower 

surface whose length 12 is less than the source width ll. For the purpose of quantitative characterization of this 

effect we have introduced the flow-focusing coefficient of the particle flux q = l l /12 as well as its narrowing coefficient 

p, which shows how many times the initial flux width decreases at the point of maximum narrowing. 

Figures 2 and 3 show the focusing and narrowing coefficients as a function of the parameters of the problem. 

When the source power is small, there are so few particles in the vessel that they do not cause, in fact, 

large-scale gas flows and both coefficients are close to unity. As the power (M21) increases, the eddy flows 

responsible for particle-flux focusing undergo enhancement and, as a consequence, the focusing and the narrowing 

coefficients increase. At M21 > 0.01 for the particle flux whose parameters are given in the above example the 

particle concentration in the maximum-narrowing region is equal to or exceeds the concentration corresponding to 

their dense packing and here, naturally, it is necessary to account for the collisions between particles and their 

volume, which is not done by the model used. Therefore variation of the parameter  M21 was limited by M21 = 
10 -2" 

An increase of the Reynolds number entails an increase of the focusing and narrowing coefficients of the 

particle flux. At low Re numbers in the system viscosity plays an important part, and gas velocities are low. With 

increasing Re, eddy motions of the gas build up (with an increasing in the Reynolds number  from 50 to 1500, the 

maximum gas velocity increases from 0.03 to 0.14 for the parameters given in Figs. 2 and 3) and, as a consequence, 

the flux becomes more focused. It should be noted that in all the calculated variants the maximum gas velocities 

did exceed 0.15, therefore the actual Reynolds numbers were smaller by a factor of seven and more than those 

formally determined by the velocity x/gH. 
With an increase in the time of high-rate relaxation of particles the focusing and the narrowing coefficients 

decrease. This is due to the fact that at small z the incident particles "adjust" their  velocity to that of the carrier 

medium more quickly than  at large z and,  consequently,  are bet ter  en t ra ined  by  the converging gas flow. 

Calculations at r > 0.5 were not conducted, because in this case the Stokes formula for the friction resistance 
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coefficient of a particle is not valid, as is illustrated below. For the vessel with H -- 3 cm g q ~  = 54 cm/sec and at 

= 0.5 the stationary free-fall velocity of a single particle is w = 7NgH = 27 cm/sec. In the case of air under normal 

conditions and particles with a density of p0 = 1.3.103 kg]m 3 such velocity is attained by particles with a diameter 

of d = (18~lw/p~g) 1/2 --- 83 ktm. The Reynolds number for such particles is Rep -- wdplo/rl = 1.6, which corresponds 

approximately to the limit of applicability of the Stokes formula. 

As is seen from Figs. 2 and 3, the source width exerts a rather weak influence on focusing of the particle 

flux. At ll ~ 0.11 the focusing coefficient is at its maximum while at ll ~ 0.15 the narrowing coefficient is maximum. 
These maxima are explained as follows. At large ll, the particle concentration in the flux is low, since the source 

power is fixed, which weakens the intensity of the eddy flows and, consequently, impairs the focusing. At small 

ll, the initial width of the particle flux is small, therefore in the region of the fall of particles the converging flow 

of the carrier medium is weak and, correspondingly, flux focusing is also slight. 

In conclusion, the method used to describe the motion of a disperse phase has allowed investigation of 

rather fine dispersed structures whose modeling by traditional methods involves great difficulties. 

N O T A T I O N  

t, time; x, y, Cartesian coordinates; Ul(ul,  Vl), P, Pl,  velocity, pressure, and density of the gas; P2, U2, 
mean density and velocity of the dispersed phase; Vk, rk, velocity and radius vector of a macroparficle; g, 

gravitational acceleration; e (0 -1 ) ,  gravity force vector; ~/, dynamic viscosity of the gas; f, friction force of particles 

in the gas; Eu, Re, Euler and Reynolds numbers; 3, dimensionless time of the high-rate relaxation of particles. 
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